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Abstract

 

Software design patterns capture recurring good practice in a domain. Many good 
patterns enjoy independent discovery by different people at different times. I have 
now seen three distinct uses of what I thought was an obscure template pattern. Each 
use arose in a unique domain; one instance was outside the C++ community. We can 
capture the technique in a pattern that solves a problem of factoring circular 
dependencies in code structure and behavior. The pattern form makes an otherwise 
opaque framework more accessible.

     
My earlier columns have started with a discus-
sion about patterns, followed by an exemplary 
pattern. This month, I’m weaving the two to-
gether to explore how we find and record pat-
terns. This is a story of how I came to 
understand an interesting family of patterns 
that have been independently invented by a 
telecommunications software designer at 
AT&T, by some scientific programmers at 
IBM, and by a computer linguist at Oregon 
State University. I’ll use this pattern to explore 
the way we think about software and abstrac-
tion and to introduce multi-paradigm design, a 
stepping-stone between object-oriented design 
and patterns. I feel like a cultural anthropolo-
gist who has discovered a grand unified theory 
of, well, something, and invite you to join me as 
I re-live the quest for the underlying abstrac-
tions of this architectural construct.

The Genesis of an Idea

Four or five years ago, a good friend and co-
worker of mine, Lorraine Juhl, showed me a 
piece of code that has intrigued me to this day. 
The code combined templates and inheritance 
in a powerful pattern that I’ve seen at least three 
other people invent independently. What was 
remarkable about this pattern was that it used 
templates so powerfully so early after their in-
troduction into the language. The code imple-
mented a finite-state machine. FSMs are a big 
part of our business in telecommunications 
(I’ve often said that everyone discovers FSMs 
at least once during their career), so a robust 
FSM abstraction was a big deal. Programmers 
defined their contribution to the FSM like this:

class myFSM: public BaseFSM
<myFSM,



 

- 2 -

                 
/*State=*/ char,
/*Stimulus=*/ char> {

public:
void x1(char);
void x2(char);
void init() {
addState(1);
addState(2);
addTransition(EOF,1,2,&myFSM::x1);
. . . .

}
};

What’s that again? The class myFSM is derived 
from a base class that is instantiated from a 
template, but the derived class is passed as a pa-
rameter to the template instantiation. Why? 
Let’s look at the template used to build the base 
class:

template <class M, class State,
class Stimulus>

class BaseFSM {
public:
virtual void addState(State) = 0;
virtual void addTransition(
Stimulus, State, State,
void (M::*)(Stimulus)) = 0;

virtual void fire(Stimulus) = 0;
};

We’ll talk more about the base class later; for 
now, think of it as an abstract base class in the 
conventional sense, one that provides an inter-
face to a family of derived class state machines.

This framework is completed by a template that 
captures the FSM state and the common ma-
chinery for a state machine. The application 
programmer uses this template to create the 
FSM object:

template <class UserMachine, class 
State, class Stimulus>

class FSM: public UserMachine {
public:
FSM() {  init(); }
virtual void addState(State);
virtual void addTransition(
Stimulus, State from, State to,
void (UserMachine::*)(Stimulus));

virtual void fire(Stimulus);

private:
State nstates,*states,currentState;
Map<Stimulus,
void(UserMachine::*)(Stimulus)>
*transitionMap;

};

int main() {
    FSM<myFSM,/*State=*/char,

/*Stimulus=*/char> myMachine;
    . . . .
}

The pattern resurfaces

It was several years later, and I had almost for-
gotten about this pattern, when Addison-Wes-
ley asked me to review a book manuscript draft. 
The book was to become Scientific and Engi-
neering C++ by John Barton and Lee Nack-
man of IBM).1 It contained lots of code that 
looked like this:

template<class DerivedType>
class EquivalentCategory {
friend Boolean operator==(
const DerivedType &lhs,
const DerivedType &rhs) {
return lhs.equivalentTo(rhs);

}
friend Boolean operator!=(
const DerivedType &lhs,
const DerivedType &rhs) {
return ! lhs.equivalentTo(rhs);

}
};

class Apple:
public EquivalentCategory<Apple> {

public:
Apple(int n): a(n) { }
virtual Boolean equivalentTo(
const Apple &an_apple) const {
return a == an_apple.a;

}

1. The book is published by Addison-Wesley,
©1994, with ISBN 0-201-53393-6. These are
the same guys who write “Scientific & Engi-
neering C++” here in the C++ Report, a column
that’s a must-read whether you do scientific and
engineering programming or not.
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private:
int a;

};

Though it’s unimportant for our purposes here, 
they go on to define a class Orange and, well, 
you can guess the rest. Sure enough, this was 
the same pattern that Lorraine had discovered a 
few years earlier. The Barton and Nackman 
manuscript raised the FSM “trick” to new 
heights by regularizing it and using it in many 
different ways. They had recognized a class of 
problems that called for this solution again and 
again.

Barton and Nackman are interested in scientific 
and engineering programming. They dwell on 
abstractions like numbers, vectors and matri-
ces, groups and other structure categories, etc. 
They are also interested in efficiency, which is 
one reason the book leverages templates as 
much as it does (the term “template” takes a full 
column in the book’s index, almost the same 
amount as for the term “type”). This pattern is 
important to them because common category 
properties (what we usually use inheritance for) 
and common code structure (what we usually 
use templates for) can be factored out of many 
of their designs. Used together, templates and 
inheritance support a design construct that we 
can capture as a pattern. The problem is:

•Factoring circular dependencies in code 
structure and behavior.

The context is a language that supports inherit-
ance and templates, used with an object-orient-
ed focus. The forces are interesting:

•We want a single base class that ties together 
the semantics of equality and inequality in 
the most general sense, so that one is guar-
anteed to be the logical negation of the oth-
er: in other words, the implementation 
should be type-restricted;

•Classes exhibiting the behaviors of an equiv-
alence category should be derived from this 

class: in general, the derived class behaviors 
are derived from the base behaviors;

•The base class must know the derived class 
type, so it can dispatch the computation of 
equality to its derived class part: in other 
words, the implementation is type-depen-
dent;

•The parameter list signature of the derived 
class must be compliant with that of the base 
class, so if the base class wants to call a de-
rived class function through a base class vir-
tual function interface, the function’s 
interface must be invariant with respect to 
the derived type;

•The derived class member function that 
computes equality has a parameter list that is 
sensitive to the derived type;

•The derived classes of interest cover a broad 
range of otherwise unrelated types.

The type restriction of the equality equivalence 
class and type dependency in the derived class 
implementations leads to a circular dependency 
between the two. The solution:

•“To obtain both type-restricted and type-de-
pendent functions, we combine the features 
of implementation and template categories. 
Specifically, we create an implementation 
base class, EquivalentCategory<DerivedType>, 
parameterized by the type of the derived 
class.” (Barton and Nackman, p. 352)

That is, we encode the circular dependency di-
rectly using inheritance in one direction and 
templates in the other. The first time I saw the 
Barton and Nackman code, I told them that 
their compiler was broken and that this 
shouldn’t compile: a compiler could never re-
duce the dependency of a base class on its de-
rived class. They very politely cited chapter and 
verse in the ARM to show where I was wrong. 
C++ allows such a dependency as long as the 
structure of the base class doesn’t depend on a 
derived class type parameter.
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Note that this is an outsider’s view of the solu-
tion; I’m looking forward to an opportunity for 
the authors to set the record straight with me. I 
also defer to them the honor of naming this pat-
tern.

Third time’s the charm

Most recently, I attended Tim Budd’s OOPSLA 
tutorial on multi-paradigm programming. I had 
been looking forward to this tutorial for some 
time, as I’ve actively been researching how 
multi-paradigm design techniques might be 
used to regularize hybrid designs. (Tim’s book, 
“Multiparadigm Programming in Leda,” will 
soon be on the market as an Addison-Wesley 
book). It turned out that Tim’s talk didn’t focus 
too much on design, but provided some fasci-
nating lessons in programming language. He il-
lustrated multi-paradigm programming using 
the Leda language that he and his students have 
developed at Oregon State University. I looked 
through his extensive notes after the tutorial 
(his notes include generous excerpts from his 
forthcoming book) and found the following 
code snippets:

class ordered [T : ordered] of 
equality[T];
. . . .

end;

class integer of ordered[integer];
function asString ()->string
begin . . . . end

function equals (arg : integer)
-> boolean;
begin . . . . end;

end;

class string of ordered[string];
function asString ()->string;
begin return self; end;

function equals (arg : integer)
-> boolean;
begin . . . . end;

end;

Deja vu all over again, and it’s not even C++. 
What was particularly remarkable about this 

example is that it relates to equality tests, as 
does one of the earliest uses of this pattern in 
the Barton and Nackman book. By the time I 
discovered the third, independently derived ex-
ample of this style, I became convinced that 
this is a pattern, not just an isolated trick. Since 
then, I’ve encountered colleagues using this 
same pattern for finite state machines (Ralph 
Kolewe at Eridani in Ontario), and in a human-
machine interface library (Paul Lucas at 
AT&T).

If this is a pattern, it must solve the same prob-
lem—at some level—in all these examples. It 
must derive from a single, common set of un-
derlying forces. So what is going on here?

Let’s look at the FSM example in Figure 1. No-
tice that this class diagram shows the same cir-
cular dependency we described for the Barton 
and Nackman example. This pattern attempts to 
solve a problem:

•Separate the common FSM mechanisms into 
a library of generic abstractions, so the pro-
grammer need write code only for the FSM 
behaviors (or policies) that are of interest to 
the application.

(An exercise left to the reader: compare this to 
the problem statement for the Barton and Nack-
man example.) Let’s jump ahead to the ratio-
nale. We have broken the design into three 
parts. BaseFSM is a template that generates a 
family of abstract base class interfaces. More 
interestingly, class FSM contains all the state 
machine machinery: it is a generic state ma-
chine. What is a generic state machine? Its in-
terface defines responsibilities for defining the 
semantics of a particular FSM: It can learn new 
states (addState) and new transition arcs be-
tween the states (addTransition). The fire 
member function causes the machine to cycle, 
processing the input provided as the member 
function argument. The FSM template also pro-
vides a generic implementation for all state ma-
chines: a state count, a current state, a vector of 
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states, and a map from the current state to the 
transition function for the current state. (I have 
simplified the design for the sake of presenta-
tion; a production version would probably map 
a 2-tuple comprising the current state and an in-
put, to a transition function.)

Programmers can develop their own classes 
like myFSM that capture the behavior of a state 
machine (its states and transitions) without 
worrying about the mechanics. The BaseFSM 
class provides a framework for the programmer 
to fill out: the class myFSM provides a home for 
an obligatory init function to set up the ma-
chine, as well as a home for the functions that 
do the work of the machine at run time. All 
FSMs share the same data structure; usually, 
we would factor those into a common base 
class. Here, we factor the common data struc-
tures into a common derived class! Why? Be-
cause:

•The FSM should initialize itself without the 
user explicitly calling init;

•A constructor should orchestrate the initial-
ization;

•Because init references virtual functions, it 
should not be called until after the myFSM 
constructor completes (so that virtual func-
tion dispatching works for myFSM functions);
•Therefore, init cannot be called from the 
constructor for myFSM or any of its base 
classes;

•We want to create only as many classes as 
necessary (Occam’s razor).

The solution is:

•Call init from a derived class. The FSM tem-
plate can generate a derived class that takes 
myFSM as a base class, with a constructor that 
calls myFSM::init. Capture the common 
data structure in the same class to avoid mul-
tiplying classes unnecessarily.

This is a pattern, at least in the sense that it doc-
uments the architect’s rationale for this rather 
involved data structure. This pattern creates a 
new context where we face a new problem:

•We want the fire member function to be ac-
cessible through the base class interface.

However,

•Common member functions should be de-
clared in the base class, usually as virtual 
functions;

•In this context (defined by the output of the 
previous pattern), the base class is the one 
provided by the user;

•Declaring fire in myFSM is make-work that 
a programmer might easily forget to do.
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Therefore:

•Define a new base class, BaseFSM, that de-
clares fire as a pure virtual function. Users 
are obligated to derive their state machines 
from BaseFSM. Calls to fire through a ge-
neric base class pointer will be dispatched 
around class myFSM to the derived class gen-
erated by the FSM template. Template type 
parameters tie the three classes together.

These patterns together form a small pattern 
language that documents this FSM framework. 
The framework code is hopelessly opaque by 
itself—as the author of the code, even I have 
trouble explaining the implementation from the 
code alone. The patterns organize my thoughts 
about the design so I can understand how to use 
the framework, and perhaps teach others how to 
use it. I suspect we’ll see a proliferation of pat-
terns to document existing and emerging 
frameworks.

Pattern, idiom, or coincidence?

Is this trick with templates just a low-level idi-
om specific to C++? I suspect that a broader de-
sign pattern lurks here; we already have one 
non-C++ data point in Tim Budd’s language. 
We will find this pattern only in languages that 
have both templates and inheritance. That is 
why we haven’t seen the pattern in Ada®, 
which lacks inheritance (I’ll bet we see the pat-
tern in Ada 9X); that’s why we don’t see it in 
Smalltalk, which lacks the compile-time bind-
ing semantics of templates. These language 
properties become a crucial component of the 
pattern context, but they don’t limit the pattern 
to C++ alone.

The FSM pattern is a variant of the technique 
used by Barton, Nackman, and Budd. Do all 
these pattern belong in the same pattern lan-
guage? Does the FSM pattern generalize as 
much as the Barton/Nackman/Budd technique, 
or does it just cover an obscure corner of de-
sign? Time will tell. As we gain experience 
with templates in practice, and as more people 

come up to speed with the Barton and Nackman 
material, we’ll know better how to shape and 
assemble C++ template pattern languages.

We can broaden the question even further. 
Budd’s code arose from a culture interested in 
multi-paradigm design (though he doesn’t 
count templates as a real paradigm). I, too have 
been exploring multi-paradigm design tech-
niques for C++ (see my paper, “Multi-Para-
digm Design for C++” in the proceedings of the 
1994 SIGS OOP/C++ World in Munich, Janu-
ary, 1994). My technique is based on common-
ality and variability analyses pioneered by my 
coworker David Weiss and his colleagues. 
Multi-paradigm design has steps and notations 
that point the way to structures such as those 
discussed here. Curiously, we find that Barton 
and Nackman have made commonality and 
variability part of their vocabulary as they de-
scribe these designs. Might there be a way to 
regularize such designs, and to provide a way 
of thinking about design that makes them more 
intuitive? If so, patterns might be overkill. 
Again, time will tell.

Signposts

John Vlissides (co-author of “Design Patterns: 
Elements of Reusable Object-Oriented Soft-
ware,” Addison-Wesley, 1994, now available at 
bookstores carrying professional computer sci-
ence texts) will soon be adding his pattern per-
spective to the C++ Report. Keep an eye out for 
his column just a few pages from here, starting 
in the March/April issue of C++ Report.

Start readying your submissions for PLoP/95.

Jim Coplien is a Member of the Software Pro-
duction Research Department at AT&T Bell 
Laboratories in Naperville, Illinois, and is a 
member of the Hillside Generative Patterns 
group. He can be reached at 
cope@research.att.com. To subscribe to the 
patterns electronic mail discussion group, send 
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mail to listserver@cs.uiuc.edu with a message body of “subscribe patterns-discussion 
your@internet.address”.
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